SSDC Phase 1 Topic Breakdown

This document is designed to help students develop a strong understanding of the SSDC Phase 1 debate topic. It outlines the key concepts, areas of focus, and common pitfalls to avoid in preparing for the competition. Please note that this is not an exhaustive guide; students are encouraged to conduct further research and develop their own original arguments and perspectives.

Topic: Governments should prioritize biotechnological solutions over carbon capture technologies in achieving carbon neutrality.

1. Definitions and Interpretation.

- Governments: National or local authorities that create laws, fund programs, and shape climate policy.
- Prioritize: To give more attention, funding, or policy support to one option over another not necessarily choosing only one.
- Biotechnological solutions: Using living things or biological science (like genetically engineered crops, algae that absorb CO₂, or biofuels) to reduce or remove emissions.
- Carbon capture technologies (CCTs): Machines and systems that pull carbon dioxide out of the air or from industrial processes (like factories), then store it underground or reuse it.
- Achieving carbon neutrality: Reaching a balance where a country or system removes as much carbon as it emits also called "net-zero" emissions.

<u>Important</u>: This is not a debate about whether we need to solve climate change – both sides agree we must. This is a debate about which kind of technology governments should focus on more.

2. Contextual Background

Scientists agree we need to reach carbon neutrality by around 2050 to stop dangerous global warming. There are many tools available: using less energy, switching to clean energy, removing carbon from the air. Governments have limited money and attention – so they must choose where to focus their help.

Two options on the table:

- Biotech: newer, based on nature and science, could change farming and fuels.
- Carbon Capture: often tied to existing industries like fossil fuels; already has investment.

3. Strategic Overview

Proposition Strategy (Support Prioritizing Biotech)

Main Idea: Biotech is more natural, creates more long-term change, and works with the environment instead of trying to fix problems after the fact.

To Win, You Should:

- Explain why biotech is more promising or transformational.
- Argue that carbon capture is too limited, expensive, or slow.
- Show that biotech brings extra benefits like better farming, cleaner fuel, and healthier land.

Opposition Strategy (Defend Carbon Capture Focus)

Main Idea: Carbon capture is the only tool ready now to handle big polluters; biotech is exciting but not ready yet.

To Win, You Should:

- Show that some industries can't reduce emissions without carbon capture (like cement or steel).
- Explain how biotech is still being developed and might not scale up fast enough.
- Argue that climate change is urgent we don't have time to wait for new technology to mature.

4. Main Areas of Clash

- Which tech works better? Which one removes or avoids more emissions effectively?
- Which is more realistic to use soon? Which one can be used now or in the next few years?
- What are the side benefits? Does it help with food, water, jobs, energy?
- Is one a risky bet? Will it fail or cause other problems (like pollution or safety issues)?
- What is the best way to spend money? Should we invest in proven tools or new ideas?

5. General Debate Notes – Mistakes to Avoid

- Treating it like a tech debate only This is not a science fair! You need to talk about governments, priorities, and policy choices.
- Ignoring the comparative You must compare biotech and carbon capture directly; not just say one is good.
- Assuming both are equal in timelines Discuss which one works faster and why that
- Missing stakeholder impacts Talk about real people affected: farmers, workers, communities.

- Failing to challenge assumptions Don't just accept what the other side says. Ask how they know it's true.
- Using vague language Be specific. Don't just say 'biotech is cleaner'; explain how.

6. Recommended Readings (to build basic understanding):

NASA Climate Kids – What is Carbon Capture? https://climatekids.nasa.gov/carbon-capture/

BBC Bitesize: What is Climate Change and How Can We Stop It?:

https://www.bbc.co.uk/bitesize/articles/zrjvxyc

National Geographic Kids – Climate Solutions:

https://kids.nationalgeographic.com/science/article/climate-change

Carbon 180 Student Guide to Carbon Removal: https://carbon180.org/publications

BioTech Primer's Beginner's Guide to Biotech & Climate: https://biotechprimer.com

Our World in Data – CO₂ Emissions and Net Zero: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions

Drawdown's Solutions Table: https://drawdown.org/solutions/table

7. Suggestions from the scientific community.

Debate Focus	Pro Side (Biotechnology	Con Side (Carbon Capture
	Priority)	Priority)
Carbon Reduction	More thorough, source	Strong scalability, suitable
Effectiveness & Efficiency	control	for heavy industry
Efficiency in Application	Preferred long-term	More realistic and feasible
	solution with lasting	under urgent emission
	benefits	reduction tasks
Cost & Feasibility	Sustainable, cost gradually	Expensive to build but
	decreasing	delivers immediate results
Additional Benefits	Improves agriculture,	No additional ecological or
	energy structure and	economic synergy effects
	ecosystems	
Risks & Side Effects	Relatively eco-friendly l,	Leakage risks, dependence
	high public acceptance	on underground storage,
		etc.
Policy Investment Return	High long-term input-	Short-term returns unclear,
	output ratio	but quantifiable carbon
		reduction effects

P.S. The above terms show how scientists would argue, and it doesn't mean the students should pick the same arguments. These are not mandatory.